PROPELLER - Comparison of PET/CT in Subjects with Confirmed Prostate Cancer Using ⁶⁴Cu-SAR-bisPSMA and ⁶⁸Ga-PSMA-11

Eva Lengyelova¹, Veronica Wong², Nat Lenzo³, Michelle Parker¹, Louise Emmett⁴

¹ Clarity Pharmaceuticals, Sydney, Australia; ² Nepean Hospital, Sydney, Australia; ³ GENESISCARE. Perth, Australia; ⁴ St. Vincent's Hospital, Sydney, Australia

Background:

Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein that is overexpressed in prostate cancer (PC). PSMA targeting PET tracers using ⁶⁸Ga or ¹⁸F have been approved by the FDA to detect PC with improvements in sensitivity and specificity compared to traditional imaging by frequently identifying subcentimeter lesions. However, these products still exhibit a relatively low sensitivity for PC, potentially due to low tumor uptake and retention, or limitations of the short half-life of the isotopes being used.

⁶⁴Cu-SAR-bisPSMA is a next-generation PET product in development for the imaging of PSMA-expressing PC lesions. In contrast to the short half-lives of 68 Ga (t_{1/2}=1.1h) and 18 F (t_{1/2}=1.8h), the longer half-life of 64 Cu $(t_{1/2}=12.7h)$ may offer significant advantages, including:

- better resolution of images and detection of lesions due to the ⁶⁴Cu positron range (0.56mm) and potential for delayed imaging (up to 72h post administration);
- universal access to products through large scale central manufacturing of ready-to-use ⁶⁴Cu-SAR-bisPSMA; and
- improved product shelf-life of up to 48h to simplify patient scheduling.

Beyond the benefits of ⁶⁴Cu, SAR-**bis**PSMA has two PSMA-targeting functional groups, compared to the current generation of PSMA targeting agents, which only have a single targeting group. This can lead to improved tumor uptake and retention and thus, detection of additional smaller lesions. This is highly relevant in patients with suspected metastatic disease or recurrence, as it can lead to a change in management.

PROPELLER (NCT04839367) was a prospective, Phase 1, multi-center, blinded review, dose-ranging study evaluating safety and preliminary efficacy of ⁶⁴Cu-SAR-bisPSMA PET in patients with known primary PC.

The aims of **PROPELLER** were to:

- determine the safety and tolerability of ⁶⁴Cu-SAR-bisPSMA;
- determine the ability of ⁶⁴Cu-SAR-bisPSMA PET to detect primary PC at 200 MBq;
- assess image quality at 100 MBq, 150 MBq and 200 MBq dosages of ⁶⁴Cu-SAR-bisPSMA; and
- explore how ⁶⁴Cu-SAR-bisPSMA compares to ⁶⁸Ga-PSMA-11 PET, a standard-of-care (SOC) radiotracer for imaging of PSMA-positive lesions in PC.

At screening, patients with untreated, histopathology-proven, primary PC with intermediate- to high-risk features completed a ⁶⁸Ga-PSMA-11 **PET/CT** between 45-60min post injection per standard of care (SOC) protocols. **30 patients** with a median age of 64 years (range: 50-75) with ISUP GG 2-5 and median PSA value of 8.21 ng/ml (range: 1.6-36) were enrolled.

Patients were dosed 1:1:3 with 100 MBq, 150 MBq and 200 MBq of ⁶⁴Cu-SAR-bisPSMA, followed by a PET/CT at 2-4h post injection, respectively. Safety was evaluated pre and post dose for up to 11 weeks via adverse event (AE) reporting, vital signs, electrocardiograms (ECGs), blood and urine analysis.

The 68Ga-PSMA-11 and 64Cu-SAR-bisPSMA PET/CT scans were **evaluated** by 2 independent, blinded, central readers to determine image quality, primary PC detection, the number and location of lesions, intensity of tracer uptake in up to 5 concordant lesions using Standardized Uptake Values (SUVs) and tumor-to-background ratios (TBR).

Patients then proceeded to prostatectomy with pelvic lymph node dissection.

Safety Results:

⁶⁴Cu-SAR-bisPSMA was well tolerated in all 30 patients with only a single related AE of Grade 1 dysgeusia (metallic taste) reported in the 200 MBq cohort. There were no clinically significant changes in any laboratory measures or ECGs at any dose level.

Median (range) Age (years)	64 (50 to 75)			
	T1	4 (13.3%)		
	T2	21 (70.0%)		
TNM Stage	Т3	4 (13.3%)		
	N0	28 (93.3%)		
	M0	28 (93.3%)		
	2	3 (10.0%)		
ISUP Grade Group	3	12 (40.0%)		
	4	7 (23.3%)		
	5	8 (26.7%)		
Median (min, max) PSA Level (ng/mL)	8.21 (1.6, 36.0)			

is underway.

All Parameter Cohorts SUVmax

SUVmean Reader

TBR

SUVmax

Reader 2 SUVmean

TBR

summary statistics.

Table 2. Number of Lesions Detected on ⁶⁴Cu-SAR-bisPSMA vs ⁶⁸Ga-PSMA-11 per Reader per Participant Analysis

$\begin{tabular}{ c c c c c c } \hline All Cohorts & & & & & & & & & & & & & & & & & & &$	Reader	PET	Total # of Lesions Detected (all participants)	Mean Number of Lesions per Participant	Standard Deviation (SD)	Median Number of Lesions per Participant	Mean Difference	Median Difference	p-value*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	All Cohorts								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reader 1	⁶⁴ Cu	63	2.2	1.2	2	0.41	0.0	0.1005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(N=29) 6	⁶⁸ Ga	51	1.8	1.3	1			
$(N=17^{*}) \stackrel{_{68}Ga}{=} 25 \qquad 1.5 \qquad 0.9 \qquad 1 \qquad \begin{array}{c} 0.52 & 0.0 & 0.074 \\ \hline \\ $	Reader 2 (N=17 [*]) 68	⁶⁴ Cu	34	2	1.4	1	0.52	0.0	0.0748
200 MBq Cohort Reader 1 (N=18) ${}^{64}Cu$ 41 2.3 1.4 2 $68Ga$ 36 2.0 1.4 1 0.28 0.0 0.442		⁶⁸ Ga	25	1.5	0.9	1			
Reader 1 (N=18) ${}^{64}Cu$ 41 2.3 1.4 2 ${}^{68}Ga$ 36 2.0 1.4 1 0.28 0.0 0.442	200 MBq Cohort								
(N=18) ⁶⁸ Ga 36 2.0 1.4 1	Reader 1 (N=18) 68	⁶⁴ Cu	41	2.3	1.4	2	0.28	0.0	0. 4427
		⁶⁸ Ga	36	2.0	1.4	1			
Reader 2 64Cu 31 2.2 1.5 2	Reader 2 (N=14 [*])	⁶⁴ Cu	31	2.2	1.5	2	0.64	0.0	0.0749
(N=14 [*]) ⁶⁸ Ga 22 1.6 1.0 1 0.64 0.0 0.074 [*]		⁶⁸ Ga	22	1.6	1.0	1			

**Comparison of imaging methods undertaken with two-sided Wilcoxon signed-rank test. Violation of normality assumption confirmed with Shapiro-Wilk Test for Normality (p<0.05). Only participants who had evaluable scans for both imaging modalities were included in the analysis. The difference between imaging modalities is the number of lesions detected with ⁶⁴Cu-SARbisPSMA PET/CT relative to ⁶⁸Ga-PSMA-11 PET/CT within a participant (i.e. ⁶⁴Cu - ⁶⁸Ga). A negative value indicates more lesions detected with ⁶⁸Ga-PSMA-11 PET/CT than ⁶⁴Cu-SAR-bisPSMA PET/CT. The trial was not powered to detect differences at an individual level.

PR PELLER

⁶⁴Cu-SAR-bisPSMA - a next-generation diagnostic agent that is safe, efficacious, has a longer half-life with favourable logistics and improved lesion uptake compared to the SOC ⁶⁸Ga-PSMA-11 PET/CT.

Initiation of a Phase 3 registrational trial

Table 1. Uptake of 64Cu-SAR-bisPSMA and 68Ga-PSMA-11 in concordant lesions

Imaging	N	Median	IQR	Min	Max	Median Difference	p-value*
⁶⁴ Cu	28	30.26	46.9	8	100	14.00	p < 0.001
⁶⁸ Ga	28	13.53	12.79	2.7	55.1	14.25	
⁶⁴ Cu	28	21.2	32.23	5.4	69.9	0.07	. 0. 0.01
⁶⁸ Ga	28	9.12	8.71	1.8	37.6	9.26	p < 0.001
⁶⁴ Cu	28	53.55	84.45	10.3	294.1	27.94	p < 0.001
⁶⁸ Ga	28	24.29	36	9.6	134.4		p forest
⁶⁴ Cu	16	41.66	58.77	6.1	100	27.00	. 0 001
⁶⁸ Ga	16	14.93	17.16	2.7	55.1	27.99	p < 0.001
⁶⁴ Cu	16	28.4	37.92	4.4	69.9	10 70	. 0 001
⁶⁸ Ga	16	9.94	11.56	1.8	37.6	18.78	p < 0.001
⁶⁴ Cu	16	78.37	98.97	6.7	243.9	44.00	. 0. 0.04
⁶⁸ Ga	16	24.69	52.14	5	112.4	46.93	p < 0.001

*Comparison of imaging methods undertaken with two-sided Wilcoxon signed-rank test. Note: The lesions were averaged for each patient so that each patient contributes once to the

Imaging Results:

- In the 200 MBg cohort, ⁶⁴Cu-SAR-bisPSMA and ⁶⁸Ga-PSMA-11 were able to detect primary PC in 100% and 77.8% of patients per Reader 1 and 85.7% and 83.3% of patients per Reader 2, respectively. The rest of the scans were indeterminate, no scan was deemed negative.
- For both readers, 200 MBg scored the highest in terms of image quality.
 - Reader 1 found 83%, 67% and 89% of scans to be acceptable at 100, 150 and 200 MBq respectively. Reader 2 found 17%, 17% and 39% of scans to be acceptable at 100, 150 and 200 MBq respectively.
- Across all cohorts, both Readers identified more lesions with ⁶⁴Cu-SAR-bisPSMA than with ⁶⁸Ga-PSMA-11 PET/CT and more lesions were identified at the 200 MBg cohort (numerical difference which is not statistically significant; the trial was not powered to detect differences in the number of lesions) (Table 2, Figure 2). The interval between the ⁶⁸Ga-PSMA-11 and ⁶⁴Cu-SAR-bisPSMA scans was 2-50 days (median 20.5 days).
- Concordant lesions on ⁶⁴Cu-SAR-bisPSMA and ⁶⁸Ga-PSMA-11 PET/CT consistently showed higher SUVmax, SUVmean and TBR with ⁶⁴Cu-SAR-bisPSMA compared to ⁶⁸Ga-PSMA-11 in all cohorts (statistically significant values for all parameters) (Table 1, Figure 1, Figure 3).

Figure 1. Comparison of ⁶⁴Cu-SAR-bisPSMA PET/CT and ⁶⁸Ga-PSMA-11 PET/CT by Reader in all cohorts

Figure 2. PET/CT demonstrated uptake of ⁶⁴Cu-SAR-bisPSMA at 200MBg (B) in a left pelvic lymph node according to both readers and PC was confirmed via histopathology. Readers did not detect uptake in pelvic lymph nodes on the ⁶⁸Ga-PSMA-11 PET/CT (A). Arrows highlight the additional node. Interval between serial imaging: 7 days

Conclusions

⁶⁴Cu-SAR-bisPSMA is shown to be safe and effective for detecting PSMA-expressing lesions

A 200 MBg dose of ⁶⁴Cu-SAR-bisPSMA was determined as optimal for future trials. ⁶⁴Cu-SAR-bisPSMA PET/CT showed a greater number of lesions and concordant lesions exhibited higher uptake on ⁶⁴Cu-SAR-bisPSMA compared to ⁶⁸Ga-PSMA-11 in all parameters in men with intermediate- to high-risk PC. Further trials to evaluate ⁶⁴Cu-SAR-bisPSMA as an imaging agent in patients with newly diagnosed and biochemical recurrence of PC using same-day and next-day imaging are underway.

Figure 3. Intra-individual comparison of ⁶⁸Ga-PSMA-11 (A,C) and 200 MBg of ⁶⁴Cu-SAR-bisPSMA (B,D) PET/CT.